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Abstract 

Using the boundary-value Green-function technique, 
analytical expressions in the form of finite series 
expansions are obtained for the relative change in the 
integrated power of the primary reflection due to the 
gradual excitation of a secondary reciprocal-lattice point 
on the Ewald sphere. Solutions are found for both a 
Laue-Laue and a Bragg-Laue case in finite shaped 
crystals confined by the scattering vectors. When the 
crystal sizes do not exceed the Pendell6sung length of the 
involved reflections, the 7z profiles exhibit the same 
qualitative features in the two cases. The solutions do 
however indicate a strong dependence on the outer 
crystal dimensions - which add a geometrical aspect to 
the interpretation of the Aufhellung and Umweganregung 
concepts. 

I. Introduction 

During the last 10 years, the development of high- 
brilliance synchrotron sources has eased the possibilities 
of using three-beam diffraction as a tool to experimen- 
tally determine invariant triplet phase sums. For a general 
review on the topic, lead articles by Chang (1992) and 
Weckert & Hiimmer (1997) should be consulted. 

The idea of using three-beam diffraction to extract 
phase information originates from Lipscomb (1949). 
Throughout the years, different aspects concerning 
multiple-beam diffraction and the phase problem have 
been explored. Major theoretical advances have been 
achieved by several authors (Ewald & H6no, 1968; 
Colella, 1974; H/immer & Billy, 1982; Hoier & 
Marthinsen, 1983; Chang, 1984; Juretschke, 1984; 
Hiimmer & Billy, 1986; Weckert & Hfimmer, 1990). 
The theoretical basis common to all these works is the 
fundamental equation of the plane-wave dynamical 
theory (von Laue, 1932; Pinsker, 1978). Here, the 
description of the scattering process is transformed to 
an eigenvalue problem in the Anpassung, 6, leading to the 
concept of dispersion surfaces. Solutions are usually 
found using numerical methods and boundary conditions 
for semi-infinite crystal plates. Many-beam effects then 
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can be associated with perturbations of the ordinary two- 
beam dispersion surface sheets. 

Thorkildsen (1987) proposed an alternative approach 
using the Takagi-Taupin equations (Takagi, 1962). This 
was found to be particularly suited for describing three- 
beam diffraction in finite crystals. Analytical solutions 
were obtained for the wave fields Do, D h and Dg by 
applying the Laplace transformation technique. The 
calculations were performed using a parallelepiped 
model crystal spanned by the scattering vectors involved. 
In the following, we pursue these ideas. Instead of 
searching for closed solutions for the fields, we use a 
series-expansion technique that involves smallness par- 
ameters inversely proportional to the extinction length of 
the reflections (Thorkildsen, 1990). This approach, which 
actually counts the scattering events to a given order 
along the possible optical routes, generates analytical 
results in cases where other mathematical treatments are 
not applicable. It might even be possible to extend this 
technique to crystals having a more general outer shape 
than what is considered here. In this paper, the concepts 
of the approach are presented. The influence of 
absorption, resonant scattering, polarization and crystal 
imperfection will be considered separately in forth- 
coming papers. 

2. Field equations 

Let us start by considering a linear dielectric medium 
with no free charges or currents in the matter. We further 
presume that the medium should have the same magnetic 
properties as vacuum. By combining Maxwell's equa- 
tions,t we obtain the following wave equation for the 
electric displacement field, D: 

V x V x [1 - xe(r)]D = -(1/¢2)(02D/Ot2),  (1) 

where we have used yon Laue's approximation for the 
electric field: 

E ~ (l/co)J1 - x~(r)]D. 

t SI units are used throughout this paper. 
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e0 is the permittivity of free space, Xe(r) is the electric 
susceptibility, which generally is a complex quantity, and 
may be expanded into a Fourier series: 

x~(r) = Y~ Xh exp(--27rih • r). (2) 
h 

Using the field expansion 

D =  y~Dg(r )exp[27r i (v t -kg-r ) ]  (3) 
g 

and assuming a gentle spatial variation of D, we obtain to 
first order in X~ the so-called Takagi-Taupin equations 
(Takagi, 1962, 1969; Taupin, 1964; Authier et al., 1968; 
Kato, 1973) for a perfect crystal: 

(i /7r)(kp.V)Dp = {K2(1 + X o ) -  kZ}Dp 

+ ~_, Xp_g{kZpDg - (kp.Dg)kp}.  (4) 
g#p 

K = 1/Jk is the wave number of the incoming vacuum 
wave, K o, and kp = k o + p is a crystal wavevector, p 
being a reciprocal-lattice vector. 

Since Dp is perpendicular to kp, it may be expanded 
into two vector components: 

2 

Dp(r) = y~ Dp(r) ~p. 
v=l 

fipl _ ~rp and ~p2 _ ~tp denote the unit polarization vectors 
associated with the wave kp. 

Using this relation and defining the mean wavevector 
inside the crystal, k = K(1 + ½Xo), one can write the 
component form of (4) as 

(kp. V)D~, = 2rcig(llkpll - k)O~ - yrig 2 

X Z Z Xp-g{elp ~" eg}Dg, 
g:~p ~, 

where the notation [Ikpl[ represents the norm (or length) 
of the vector kp. We define the deviation parameter 
(Authier et al., 1968) as 

/3p : Ilkpll-k=~p-K3yp-½Xgo, (5)  

where Otp = I lKpll-  K is the excitation error associated 
with reflection p. 5, the Anpassung, is treated in the 
kinematical limit by putting ~ =-Xo/2Yo.  This corre- 
sponds to/30 = a o = 0 (Authier, 1996). yp is a direction 

^ 
cosine, expressed by yp = ft. §p, where n is the unit 
normal vector to the entrance surface directed into the 
crystal and §p is a unit vector along Kp = K o + p. 

Finally, we introduce the definition 

K~p~q = -~KXp_q{~  ~ • ~q} = ( r e ) ~ / V c ) F p _ q { e ;  • eq}, (6) 

where r e is the classical electron radius, V C the unit-cell 
volume and Fp_q the structure factor associated with the 
reflection p - q. 

The Takagi-Yaupin equations may then be written 

ODp/Osp = 2zriflpD~ + i Y~ Z x~qDq, (7) 
q¢p v 

Sp being a positional coordinate along §p. 
Redefining the phases of the field amplitudes by 

performing a unitary transformation, 

D; = D~ exp (2rci y~fluSq), (8) 
q 

we remove the first term on the right-hand side of (7) and 
thus obtain the equations in their final general form: 

oD; /OSp = i Z • K;qD q. (9) 
qCp v 

The transformation (8) corresponds to using the Lorentz 
point as the excitation point for the fields (Thorkildsen & 
Larsen, 1997). D~ are thus the solutions for the exact 
three-beam position. 

In order to simplify the mathematical expressions, we 
neglect for the time being any interactions between 
different polarization states of the vector amplitudes. 
Effects of such interactions will be considered separately 
in a following paper. 

In the case of three-beam interactions, p, q 6 {o, h, g}, 
the set of equations (9) may be written 

obo/oSo = iXohbh + iXogbg 

ODh/OS h = iXho£) o + iKhgOg (10) 

abg/asg = iKgobo + iKghbh. 

3. Principle of solution 

The field amplitudes are now formally obtained by 
integration of the above equations. It is convenient to 
introduce a linear operator, £~pq: 

Sp 
~-~pqbq : iKpq f dS'p O q. (11) 

The appearance of the operator ~_.pq implies a scattering 
event ~q ---> §p. Thus, scattering of the beam from §g to §h 
is governed by 

s h 
E.hgDg(so, Sh, Sg ) = ix.hg f ds'hDg(So, S'h, Sg ). (12) 

s~ 

Later, the appearance of a member of the set {Xpq} will 
label a scattering process. 

We may thus write 

bo : b ~  + C~ohbh + C.ogb~ 

*'h "[- ~-~hobo + ~-¢hgbg (13) 
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Here, b indicates a boundary point. In order to obtain the 
boundary-value Green functions for the wave fields, we 
apply a point source of strength D~ e), associated with the 
incident direction, Ko; and formulate the boundary 
conditions for the transformed fields by 

[)~o b) = Oo[Sbo(Sh, Sg), S h, Sg] -- oleiS(Sh)3(Sg) 

D~ b) = Dh[so, S~(So, Sg),Sg] = 0 (14) 

: b [So, s (So, : 0, 

where 5() denotes the Dirac delta function. 
In order to keep track of the number of scattering 

events, we associate a counting variable, e, with the 
smallness parameters, Xpq, of equation (11). We then seek 
solutions for the fields in the form of series expansions in 
e (~f Kato, 1976; Becker, 1977): 

bo(so, = DI E e"dy (So, s t) 
n=0 
oG 

Dh(so, sh, Sg) = D(~) ~-~ e"d~")(So, Sh, Sg) (15) 
n=l 
oo 

bg(So,  Sh, Sg) = D(: ' Z e"d(g")(So, sh, Sg). 
n=l 

In the final expressions, we let e --+ 1. 
Combining the sets (13) and (15), we obtain, by 

equating equal powers of the counting variable, e, the 
following recurrence relations (for n > 1): 

do n) r A(n- I ) (n- 1 ) 

d~") r d( , -  1) = ~ho-o + £hgd~ "-I) (16) 
dg(n)~ ft. d(n -1 )  F , . /(n-I) ~go-'o 71- """ ght"*h • 

This, together with the boundary conditions for {dp}, 

d(-. °)  = 3(Sh)3(Sg ) (17) 

d~ °) = d g  ~°) = O, (18) 

enable us to perform the calculations of the amplitudes in 
principle to any desired order. Explicitly, we have for the 
{aTe}: 

d~ '~= E.hod~ °~ (19) 

a~ 2) = 17"hg ~--'go a(O) ( 2 0 )  

d~ 3) = £hg £gh £ho d(o O) + £ho £og £go d(--°) 

+ E.ho E.oh E.ho d(_.o °). (21) 

This buildup of the field corresponds to Kato's optical 
zigzag routes representing multiple reflections (Kato, 
1976). 

The number of subterms, N, constituting d~ ") is given 
by the recurrence relation N(n)  = N(n  - 1) + 
2 N ( n -  2), where N(1) = N(2) = 1. I.e. N(6) = 21, 
N(10) = 341 and N(20) = 349 525. It is thus hardly 

worthwhile to go beyond the tenth order in the expansion 
- which sets a practical limit to this method. 

The solution for D h gives the value of the transformed 
amplitude of the primary diffracted beam at the point 
(s o, s h, sg) due to a point source at the origin. The wave 
amplitude of this beam at a point P, with coordinates 
(so(P), sh(P), %(P)),  due to a source at S with coordinates 
(so(S), sh(S), sg(S)) is given by[  

Dh(P *-  S) = J D h ( A  o, Ah, Ag)exp(2rriothAh) 

x exp(2:rriotgAg)O(Ao)O(Ah)O(Ag ). (22) 

Here, J is a geometrical factor, which enters through the 
transformation of the source Dirac field density function, 
using a representation in coordinates normal to the 
incident direction to the form 3(sh)3(Sg ) used in (14). We 
have also defined 

Aq = sq(P) - sq(S). (23) 

0(Aq) denotes the Heaviside unit step function, as the 
wave fields are zero outside the pyramid defined by the 
unit vectors §o, §h and §g, with the top located at S. 

The real Or) and imaginary (5) components of the 
fields at an exit point, P, due to the incoming plane wave 
are obtained by superimposing the amplitudes from all 
source points, S, on the entrance surface, which 
contribute to the field at P (Becker, 1977; Becker & 
Dunstetter, 1984; Bremer & Thorkildsen, 1986). I.e. 

!}{Dh(P) = f dS.  §o ~ D h ( P  ~-- S), (24) 

with a similar equation for the imaginary part of the 
amplitude. The intensity of the primary diffracted beam 
at the point P on the exit surface is given by 

C C 
Ih(P ) = ~E0 [Dh(p)[2 = ~6o{[!)tDh(p)]2 + [~Dh(p)]2}. 

(25) 

The power of the primary diffracted beam is then 
obtained by summing the contributions due to all points 
on the exit surface: 

Ph = f dP .  §h Ih. (26) 

For calculation of the integrated power, it has been shown 
(Hoier & Marthinsen, 1983) that the excitation errors, ah 
and otx, depend on two external divergence angles, e I and 
e2.;~ Neglecting any dependence of the vertical diver- 
gence e 2 and assuming that otg varies negligibly with el, 
we have to consider 

ot h = (sin 20oh~Me 1 . (27) 

t Absorption and refraction are here neglected, i.e. 

Which give the position of the incident wavevector relative to the 
Laue point. 
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The integrated power thus becomes 

oo 

TJ h = f de 1Ph[eth(el), Olg]. 
- -  OG 

(28) 

4. Crys ta l  g e o m e t r i e s  

In this work, we have chosen two finite crystal shapes 
initiating different types of scattering geometry. As 
depicted in Figs. 1 and 2, the crystals are all confined 
by the unit scattering vectors {§o, §h, §g}. This is in order 
to simplify the mathematical treatment, i.e. the integra- 
tion set-up in equations (24) and (26) and the treatment 
of the boundary conditions for the fields. The model 
crystal shapes are chosen such that the outer surfaces are 
parallel to the characteristic planes associated with the 
equations (Sommerfeld, 1949; Sneddon, 1957; Myint-U, 
1980). 

Crystal dimensions are denoted lo, lh, lg. Fig. 1 
represents a Laue-Laue case, whereas Fig. 2 represents a 
Bragg-Laue case. 

The volume, V °, of the cell spanned by the set of unit 
vectors {So, §h, Sg} is given by 

V, ° = {1 - cos 2 20oh - cos 2 20og -- COS 2 20hg 

+ 2 cos 20oh cos 20og COS 20hg} 1/2, 

where 20pq L (Sp, Sq). 
The geometrical factor, J, c f  (22), is in both cases 

J = 1 /V  ° s ° 

For the Laue-Laue case, we have: 

,% =so(P) 

Ah = lh - sh(S) (29) 

Ag -- Sg (P) - Sg (S). 

The wave field at P due to an incoming plane wave thus 
becomes 

lh sg(P) 
Dh(P) = V:, ° f dAh f dAgDh(P *- S) 

o o 

and the power at the exit surface is 

to 
Ph = v, ° f dso(P) f dsg(P) Ih(P ). 

0 0 

In the Bragg-Laue case, it is convenient to use a 
coordinate system, {to, rl, r2}, where rl is spanned by §o 
and §h. The relations between the coordinates are given 
by 

s o = r o + r 1/2 cos 0oh 

s h = r I/2 cos Ooh 

Sg = r 2 

and consequently 

A o = A h = (1/2 cosOoh){rl(P ) -- rl(S)} 

= (1/2 cos Ooh)A1 (30) 

Ag = r2(P ) - r2(S ) = A 2. 

The wave field at P due to an incoming plane wave is 
written 

rl (P) r2 (P) 

Dh(P)=(V,°/2cosOoh) f dA, f dA2Dh(P ~ s) 
o o 

and the power at the exit surface becomes 

2 l  o cos Ooh lg 

Ph =(V,,°/2cosOoh) f dr,(P) f drz(P)Ih(P). 
0 0 

t, 

o \ 
20.  ....... ,, 

•,~, 

i, 
Fig. 1. Scattering, crystal and polarization geometry for the Laue-Laue 

case. 

$1, 

O~ 

O ~  , v 

1, 

Fig. 2. Scattering, crystal and polarization geometry for the Bragg-Laue 
case. 



124 THREE-BEAM DIFFRACTION IN FINITE PERFECT CRYSTALS. I 

5. Results 

Using (11), (16), (17) and (18), we obtain the following 
results to the sixth order of perturbation (all expressions 
are to be multiplied by the factor iKho ). 

Laue-Laue case: 

d~ 1) "- S(Sg) 

d~ 2) = F(i cos ~or~ - sin ~or.) 

d~ 3~ = -AoAhu~(sx) - A o v -  Ahw 

d~ 4~ -- F{[AhAoU + AgAoV + AgAhw]  sin ~oz 

- i[3AhAou + AgAov + AgAhw ] cos ~Pz} 

d~5) l 2A2ou23(Sg ) + 2 = -~ ah a , , & u v + ½ G a ~  

+ A~Aouw + 3AgAhAoVW ._1_ 1 AgA2hW2 

+ Ag A h Aovw cos 2~0 z + iAg A h AoVW sin 2~p z 

d~6) l 2 2 2  AhA2Uv .+ 1 Ag = -r{[~ ahaou + ag 2A2v2 

2 2 Aaw 2] sin + Aga2hAoUW + A g A h A o V W  + ¼ Ag q9 x 

i[~ --2--2 2 2 2 - ahaoU +3AgAhA2ouv+¼AgAoV ~ 

+ 3AgA2hAouw + A2gAhAoVW 
I 2 2 + ~, A g A h  w2] COS 99x}. 

Bragg-Laue case: 

a~ 1) =3(Sg)  

d~ 2) = F(icos~pr. - sin %:) 

d ~ ' = - ½  a~ua(Sg)- a , , v -  a~w 

h 4) I-'{[1A~u + A h A g V +  AhAgw] sin~ox 
• 3 2 -- l[~ AhU At- mhmgV "-]- mhmgW ] COS (PIE} 

= 1 2AgV2 d~ 5) I A4u2~(Sg) q - I  A3I, IV.-~-~A h 

+ ½ a3uw + 2a2Gvw + ½ a2agW ~ 

A a Agvw sin + ½ A2AgVWCOS 2~Oz + i 2~Oz 

4 6) : _ l - ' { [ l  A4U 2 + ½ A 3 A g u v  + 1 AhAgV 2 2 2  

+½a2ag .W+~ 2 2  AhAgvw+¼ 2 2 Ah AgW 2] sin ~Oz 

-- i[~ Anu 2 + ~ A~Aguv + ~ A~Ag~V 2 
3 Al_~m3mguw.q_3 2 2 Ah AgVW..~ I 2 2 AhAgW ~] cos ~0 z }. 

For the Laue-Laue case, {A o, A h, Ag} are given by 
(29) and, for the Bragg-Laue case, {A o = A h, Ag} by 
(30). 

In addition, we have introduced the following defini- 
tions: 

U = KohKho , V = KogKgo, W = KhgKgh, (31) 

r = I~hgllxgol/lxho l, 

~°z = ~Poh + ~Ol, g + ~Pgo. (32) 

Our definition of ~0 z is used owing to symmetry reasons 
and corresponds to the one given by Giacovazzo et al. 
(1992) for the phase of the triplet invariant. In 
experiments, the observable phase information will be 
given by %g + ~ g o -  ~ho (Hfimmer & Weckert, 1990). 
The difference between this expression and our definition 
will be apparent in cases of resonant scattering (Larsen & 
Thorkildsen, 1998). It should also be noted that the sign 
in the definition of ~Pz, equation (32), has been reversed 
compared to the previous paper (Thorkildsen, 1987). The 
present definition is therefore in accordance with 
prevalent notations (Hiimmer & Billy, 1982) when 
resonant scattering is neglected. 

The phase angle q)pq is defined through 

Kpq --- [Xpql exp(@pq). (33) 

Neglecting absorption and anomalous scattering, we may 
write 

Xqp = [Kpq[ exp(-i~Opq). 

Algorithms corresponding to equations (16), (22), (25) 
and (26) were implemented in MATHEMATICA.t The 
integration procedures were extensively coded in order to 
ease the algebraic manipulations. Finally, the following 
expressions for the power in the Laue-Laue and Bragg- 
Laue cases were obtained (for convenience, only the 
results to third order are presented here; the MATHE- 
MATICA code for the expressions up to the sixth order is 
available from the authors upon request). 

Laue-Laue case: 

Ph = lolxhol2vLlh{2fl(G)- 1%12fl(G) 

- 4(I Ohg I Irlgol/Irlhol)~(~g) cos ~0z 

+f~ (~g)sin ~pz]f~ (~h) - 21rlgol2f~(~g)f~(G) 

-- 2lrlhgl2[j~(~g)f~(~h) -Ff2(~g)fa(~h)] 

+ 4(1 r/he [ 2 IOgol 2/Irlhol2)f3(~g)fl (~'h)}. 

Bragg-Laue case: 

Ph -- 21olxhol2velo{2f3(~h)- Ir/ohl2fs(~h) 

-- 4(lObe[ Irb, ol/l~%ol)[f2(~g) cos ~Pz 

+ Ji (~g) sin ~oz] ~ (G) 

- 2(It/go] 2 4-[Ohgl2)[j](~g)f6(~h)--A(~g)f7(~h)] 

+ 2(Irlhgl2logol2/lrlhol2)f3(~g)f3(G)}. 

(34) 

(35) 

Here, Io = (c/2eo)lDl~,)12 is the intensity of the incident 
beam, and v L and v 8 are the volumes of the Laue-Laue 
and Bragg-Laue crystals, respectively. 

t MATHEMATICA is a trademark of Wolfram Research lnc., 
Champaign, IL 61820, USA. 
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We h a v e  a l so  i n t r o d u c e d  the  f o l l o w i n g  d i m e n s i o n l e s s  
quan t i t i e s :  

Ir/pql 2 --  IKpql 2lplq 

~h = 2zrc~ h l h 

= e r%l . 

T h e  f u n c t i o n s  f are  g i v e n  by  

f l ( u )  = ( l / u 2 ) ( 1  - c o s u )  

f 2 (u )  = ( l / u ) [ 1  - ( 1 / u ) s i n u ]  

f3 (u )  - -  (1 /u2) [1  - ( 1 / u )  s in  u] 

f4 (u )  - ( 1 / u 2 ) [ s i n  u - ( 2 / u ) ( l  - cos  u)] 

f s ( u )  - ( 1 / 3 u S ) ( - 1 2 u  + u 3 - 1 2 u c o s  u + 24  sin u 

- 3u  2 s in  u) 

f6 (u )  - -  ( 1 / 2 u 4 ) ( 2  + u 2 - 2 cos  u - 2u sin u) 

f T ( u )  - -  ( l / u 4 ) ( - - 2 u  - -  u c o s u  + 3 sin u). (36) 

T h e  i n t e g r a t e d  p o w e r  m a y  n o w  be  c a l c u l a t e d  u s i n g  (28) ,  

n e g l e c t i n g  any  va r i a t i on  o f  C~g w i t h  e I - c f  (27).  T h e  
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Fig. 3. Relative integrated power, APh/7~h °, as a function of the normalized excitation error, seg = 27raflg. Solid line: Laue-Laue case; dashed line: 
Bragg-Laue case. Ioohl = Ioogl = Inghl = 0.5. ~0z = 0. (a) Second order, (b) third order, (c) fourth order, (d) fifth order, (e) sixth order. ( f )  
Contribution added. Note the different scales on the ordinate axis. 
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terms proportional to 10ohl 2 in equations (34) and (35) 
represent first-order correction of the diffracted power 
due to primary extinction. They are built from the 
scattering event XhoXohXho in equation (21), thus involving 
multiple scattering among the §o and §h beams. In 
subsequent treatment, we neglect such terms. In order to 
obtain an expression for the relative change in the 
integrated power due to three-beam interaction, we 
introduce the kinematical two-beam integrated power: 

790 = Iovlxhol2(l/sin 2Ooh). (37) 

To the third order of perturbation, we thus get: 

Laue-Laue case: 

A 79h(~g)/790 = _2([rlhgllrlgol/lrlho[) 

x ~(~g)cos~0 z +fl(~g) sin~oz] 

- ([r/gol 2 + [rlhgl2)fl(~g) 

+ 2(Irl~glmlOgol2/Irlhol2)f3(~g). (38) 

Bragg-Laue case: 

A79h(~g) /790  " - - - 2 ( I r l h g l l r l g o l / l r l h o l ) ~ ( ~ g ) c o s ~ p  z 

+f~(~g) sin~pz]- ~([rlgo[ 2 + [rlhg[Z)f~ (~g) 

+ ([rlhglZlrlgol2/lrlhol2)f3(~g) (39) 

with ~g = ~g(~p) = 2rrOtg(~)lg. We note that the result for 
the Laue-Laue case is identical to the one found from the 
exact field expressions (Thorkildsen, 1987). 

6. D i scuss ion  

The solutions obtained for the different crystal and 
scattering geometries are confined to a limited range of 
I rlpql values, owing to the series-expansion cut-off. For 
the present development to the sixth order in the 
scattering power, the expressions are valid for [rlpql < 1. 
Then, the systematic error due to the cut-off is less than 
10 -4.  

Fig. 3 shows how the perturbation terms add up to 
build the diffracted power. It should be noticed that the 
contribution to the second order1- is the same in both the 
Laue-Laue and Bragg-Laue cases considered. From the 
figure, and from equations (38) and (39), we find that 
there are no qualitative differences between the Laue- 
Laue and Bragg-Laue reflection geometries - at least for 
crystal dimensions not exceeding the PendellSsung 
distance in the Laue-Laue case. This is illustrated in 
Fig. 4, where the relative change in the integrated power 
for four different crystal sizes:[: is depicted. From the 

f In the series expansion. 
++ We hence consider the same reflection triplet, but vary l o, I h and lg. 
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Fig. 4. Effect of  increasing the crystal size. Solid line: Laue-Laue case; dashed line: Bragg-Laue case. ~o z = 0. (a) l'7ohl = [flog[ = [Ogh[ = 0.3, (b) 

Io,,hl = I%1 = Ioghl = 0.5, (c) IOohl = I%1 = Irlghl = 0.7, (d) Irlohl = IOog[ = 10ghl = 0.9. 
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Fig. 6. Re la t ive  in tegra ted  p o w e r  as a func t ion  o f  the invar iant  t r iplet  
phase  s u m  and the n o r m a l i z e d  exc i t a t ion  error,  k a u e  k a u e  case.  
I~/,,t,[ = 0.7,  Irr,vl = O. 1. I~l,,hl = 0.7:  i.e. an Aulhellung s i tuat ion.  
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Fig. 7. Relative integrated power as a function of the invariant triplet 
phase sum and the normalized excitation error. Laue-l,aue case. 
I¢,,,I = 0.1, I¢,,~l = I~/~hi = 0.7:  i.e. an Umweganregung situation. 

curves, we do not see any significant differences for the 
two reflection geometries before {l~lf,ql} approach unity. 
Then, Pendel l6sung effects start to become imporlant for 
the Laue transmission case, resulting in substantial 
deviations from the Bragg reflection case. This confirms 
previous findings (Hiimmer et al., 1990: Weckert & 
Hiimmer, 1997). From (38) and (39), it is seen that the 
third-order terms in the perturbation-series solution are 
phase independent. They correspond to the scattering 
events xh~x~hgh, , and Kh,,X,,~Xv, , in equation (21) and 
consequently do not involve ~0z. I.e. tbr l~Tt, ul <1  they 
represent the main contribution to the well known 
Umweganregung  and At! lhelhmg effects. In order to 
keep such effects as small as possible, we should have 
Irl,,hl, [~h~{ and Irk,x] all of  the same order of  magnitude. 
This is shown in Fig. 5, where we have plotted the 
relative integrated power as a function of  both the 
invariant phase sum and the deviation parameter, ,~(~).  
We suppose that the magnitudes of  the involved structure 
factors are the same and that Au.lhelhmg (Fig. 6) and 
Umweganregung  (Fig. 7) effects are generated by crystal 
shape anisotropy alonc. These limitations, imposed on 
the I r/vql parameters, are in accordance with Weckert & 
Hiimmer (1990) who, based on experimental cxpcricnce, 
found that the ratio of  polarization corrected structurc 
factors, II~],~,I~I/IF~,I, should stay within the range 2-6. 
However, based on our results, this implies that the 
crystal dimensions should be fairly isotropic. I.e. crystal 
geometry, in addition to structure-factor magnitudes, 
should also be considered when selecting suitable three- 
beam cases for investigation. 

It seems to be an important point to stress that the use 
of  the Takagi-Taupin equations shows that the ~Tt,, ~ 
parameters are the governing quantities regarding three- 
beam diffraction in finite perfect crystals. This implies 
that the well known Umweganregung  and At#he lhmg  
effects also have a geometrical aspect to be considered. 
Such effects arise even if the structure factors involved 
are of  equal magnitudes, provided a sufficient crystal 
shape anisotropy is present. 
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